
An analysis of published nucleotide sequences of the 5'-untranslated region (5'-UTR) of 7 cardioviruses and 3 aphthoviruses has allowed us to derive a consensus secondary structure model that differs from that previously proposed for the 5'-UTR of entero- and rhinoviruses, though all these viruses belong to the same family, Picornaviridae. The theoretical model derived here was experimentally supported by investigating the accessibility of encephalomyocarditis virus RNA to modifications with dimethyl sulfate and its susceptibility to S1 and cobra venom nucleases. The possible involvement of the 5"-UTR secondary structure domains in the translational control is briefly discussed.
Models, Molecular, Base Sequence, Molecular Sequence Data, Carcinoma, Krebs 2, Mice, Species Specificity, Animals, Nucleic Acid Conformation, RNA, Viral, Encephalomyocarditis virus, Oligonucleotide Probes
Models, Molecular, Base Sequence, Molecular Sequence Data, Carcinoma, Krebs 2, Mice, Species Specificity, Animals, Nucleic Acid Conformation, RNA, Viral, Encephalomyocarditis virus, Oligonucleotide Probes
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 205 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
