
pmid: 25681790
Isothiocyanates are plant-derived compounds that may be beneficial in the prevention of certain chronic diseases. Yet, by stimulating the production of reactive oxygen species (ROS), isothiocyanates can be genotoxic. Whether antioxidants influence isothiocyanate-induced genotoxicity is unclear, but this situation was clarified appreciably herein. In HCT116 cells, phenethyl isothiocyanate (PEITC) increased ROS production, which was inhibited by N-acetylcysteine (NAC) and deferoxamine (DFO) but not by ascorbic acid (ASC) and trolox (TRX) that were found to be more potent radical scavengers. Surprisingly, ASC and TRX each intensified the DNA damage that was caused by PEITC, but neither ASC nor TRX by themselves caused any DNA damage. In contrast, NAC and DFO each not only attenuated PEITC-induced DNA damage but also attenuated the antioxidant-intensified, PEITC-induced DNA damage. To determine if the DNA damage could be related to possible changes in the major antioxidant defence system, glutathione (GSH) was investigated. PEITC lowered GSH levels, which was prevented by NAC, whereas ASC, TRX and DFO neither inhibited nor enhanced the GSH-lowering effect of PEITC. The GSH synthesis inhibitor, buthionine sulphoxime, intensified PEITC-induced DNA damage, although by itself buthionine sulphoxime did not directly cause DNA damage. The principal findings suggest that ASC and TRX make PEITC more genotoxic, which might be exploited in killing cancer cells as one approach in killing cancer cells is to extensively damage their DNA so as to initiate apoptosis.
Biphenyl Compounds, Drug Evaluation, Preclinical, Apoptosis, Ascorbic Acid, Free Radical Scavengers, HCT116 Cells, Glutathione, Picrates, Isothiocyanates, Humans, Chromans, Reactive Oxygen Species, HT29 Cells, DNA Damage, Mutagens
Biphenyl Compounds, Drug Evaluation, Preclinical, Apoptosis, Ascorbic Acid, Free Radical Scavengers, HCT116 Cells, Glutathione, Picrates, Isothiocyanates, Humans, Chromans, Reactive Oxygen Species, HT29 Cells, DNA Damage, Mutagens
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
