Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Monthly Notices of t...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Monthly Notices of the Royal Astronomical Society
Article . 2019 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Testing exoplanet evaporation with multitransiting systems

Authors: Owen, JE; Estrada, BC;

Testing exoplanet evaporation with multitransiting systems

Abstract

ABSTRACT The photoevaporation model is one of the leading explanations for the evolution of small, close-in planets and the origin of the radius-valley. However, without planet mass measurements, it is challenging to test the photoevaporation scenario. Even if masses are available for individual planets, the host star’s unknown EUV/X-ray history makes it difficult to assess the role of photoevaporation. We show that systems with multiple transiting planets are the best in which to rigorously test the photoevaporation model. By scaling one planet to another in a multitransiting system, the host star’s uncertain EUV/X-ray history can be negated. By focusing on systems that contain planets that straddle the radius-valley, one can estimate the minimum masses of planets above the radius-valley (and thus are assumed to have retained a voluminous hydrogen/helium envelope). This minimum mass is estimated by assuming that the planet below the radius-valley entirely lost its initial hydrogen/helium envelope, then calculating how massive any planet above the valley needs to be to retain its envelope. We apply this method to 104 planets above the radius gap in 73 systems for which precise enough radii measurements are available. We find excellent agreement with the photoevaporation model. Only two planets (Kepler-100c and 142c) appear to be inconsistent, suggesting they had a different formation history or followed a different evolutionary pathway to the bulk of the population. Our method can be used to identify TESS systems that warrant radial-velocity follow-up to further test the photoevaporation model. The software to estimate minimum planet masses is publicly available at https://github.com/jo276/EvapMass.

Countries
Denmark, United Kingdom
Related Organizations
Keywords

interiors [planets and satellites], planets and satellites: physical evolution, FOS: Physical sciences, Astronomy & Astrophysics, star interactions, ATMOSPHERIC ESCAPE, RADIUS DISTRIBUTION, 0201 Astronomical and Space Sciences, POWERED MASS-LOSS, Solar and Stellar Astrophysics (astro-ph.SR), planets and satellites: atmospheres, Earth and Planetary Astrophysics (astro-ph.EP), Science & Technology, VALLEY, PLANET FORMATION, atmospheres [planets and satellites], NEPTUNES, 520, planets and satellites: interiors, physical evolution [planets and satellites], Astrophysics - Solar and Stellar Astrophysics, planet, Physical Sciences, X-RAY, IN SUPER-EARTHS, HELIUM, Astrophysics - Earth and Planetary Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 1%
Top 10%
Top 1%
Green
gold