Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Caltech Authors (Cal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Monthly Notices of the Royal Astronomical Society
Article . 2019 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Constraints on magnetospheric radio emission from Y dwarfs

Authors: Kao, Melodie M.; Hallinan, Gregg; Pineda, J. Sebastian;

Constraints on magnetospheric radio emission from Y dwarfs

Abstract

Abstract As a pilot study of magnetism in Y dwarfs, we have observed the three known infrared variable Y dwarfs WISE J085510.83−071442.5, WISE J140518.40+553421.4, and WISEP J173835.53+273258.9 with the NSF’s Karl G. Jansky Very Large Array in the 4–8 GHz frequency range. The aim was to investigate the presence of non-bursting quiescent radio emission as a proxy for highly circularly polarized radio emission associated with large-scale auroral currents. Measurements of magnetic fields on Y dwarfs may be possible by observing auroral radio emission, and such measurements are essential for constraining fully convective magnetic dynamo models. We do not detect any pulsed or quiescent radio emission, down to rms noise levels of 7.2 µJy for WISE J085510.83−071442.5, 2.2 µJy for WISE J140518.40+553421.4, and 3.2 µJy for WISEP J173835.53+273258.9. The fractional detection rate of radio emission from T dwarfs is ∼10 per cent suggesting that a much larger sample of deep observations of Y dwarfs is needed to rule out radio emission in the Y dwarf population. We discuss a framework that uses an empirical relationship between the auroral tracer Hα emission and quiescent radio emission to identify brown-dwarf auroral candidates. Finally, we discuss the implications that Y dwarf radio detections and non-detections can have for developing a picture of brown dwarf magnetism and auroral activity.

Country
United States
Keywords

stars: individual: WISE J140518.40+553421.4, stars: individual: WISE J085510.83−071442.5, 530, planets and satellites: magnetic fields, stars: individual: WISEP J173835.53+273258.9, 520, planets and satellites: aurorae, brown dwarfs

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Green
gold