
arXiv: 1510.07659
We extend a machine learning (ML) framework presented previously to model galaxy formation and evolution in a hierarchical universe using N-body + hydrodynamical simulations. In this work, we show that ML is a promising technique to study galaxy formation in the backdrop of a hydrodynamical simulation. We use the Illustris Simulation to train and test various sophisticated machine learning algorithms. By using only essential dark matter halo physical properties and no merger history, our model predicts the gas mass, stellar mass, black hole mass, star formation rate, $g-r$ color, and stellar metallicity fairly robustly. Our results provide a unique and powerful phenomenological framework to explore the galaxy-halo connection that is built upon a solid hydrodynamical simulation. The promising reproduction of the listed galaxy properties demonstrably place ML as a promising and a significantly more computationally efficient tool to study small-scale structure formation. We find that ML mimics a full-blown hydrodynamical simulation surprisingly well in a computation time of mere minutes. The population of galaxies simulated by ML, while not numerically identical to Illustris, is statistically and physically robust and follows the same fundamental observational constraints. Machine learning offers an intriguing and promising technique to create quick mock galaxy catalogs in the future.
20 pages, 27 figures, 6 tables. Accepted to MNRAS
Cosmology and Nongalactic Astrophysics (astro-ph.CO), Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies, Astrophysics - Cosmology and Nongalactic Astrophysics
Cosmology and Nongalactic Astrophysics (astro-ph.CO), Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies, Astrophysics - Cosmology and Nongalactic Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 49 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
