
arXiv: 1302.7253
We quantify the effects of magnetic fields, cosmic rays and gas pressure on the rotational velocity of HI gas in the Milky Way, at galactic distances between Rsun and 2Rsun. The magnetic field is modelled by two components; a mainly azimuthal magnetic component and a small-scale tangled field. We construct a range of plausible axisymmetric models consistent with the strength of the total magnetic field as inferred from radio synchrotron data. In a realistic Galactic disk, the pressure by turbulent motions, cosmic rays and the tangled turbulent field provide radial support to the disk. Large-scale (ordered) magnetic fields may or may not provide support to the disk, depending on the local radial gradient of the azimuthal field. We show that for observationally constrained models, magnetic forces cannot appreciably alter the tangential velocity of HI gas within a galactic distance of 2Rsun.
11 pages, 8 figures, accepted for publication in MNRAS
Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies
Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
