
arXiv: 1207.5162
Using 3D hydrodynamic calculations we simulate formation of molecular clouds in the Galaxy. The simulations take into account molecular hydrogen chemical kinetics, cooling and heating processes. Comprehensive gravitational potential accounts for contributions from the stellar bulge, two and four armed spiral structure, stellar disk, dark halo and takes into account self-gravitation of the gaseous component. Gas clouds in our model form in the spiral arms due to shear and wiggle instabilities and turn into molecular clouds after $t\simgt 100$ Myr. At the times $t\sim 100 - 300$ Myr the clouds form hierarchical structures and agglomerations with the sizes of 100 pc and greater. We analyze physical properties of the simulated clouds and find that synthetic statistical distributions like mass spectrum, "mass-size" relation and velocity dispersion are close to those observed in the Galaxy. The synthetic $l-v$ (galactic longitude - radial velocity) diagram of the simulated molecular gas distribution resembles observed one and displays a structure with appearance similar to Molecular Ring of the Galaxy. Existence of this structure in our modelling can be explained by superposition of emission from the galactic bar and the spiral arms at $\sim$3-4 kpc.
10 pages, 8 figures
Cosmology and Nongalactic Astrophysics (astro-ph.CO), Astrophysics of Galaxies (astro-ph.GA), ISM: CLOUDS, FOS: Physical sciences, GALAXY: STRUCTURE, Astrophysics - Astrophysics of Galaxies, GALAXIES: ISM, Astrophysics - Cosmology and Nongalactic Astrophysics
Cosmology and Nongalactic Astrophysics (astro-ph.CO), Astrophysics of Galaxies (astro-ph.GA), ISM: CLOUDS, FOS: Physical sciences, GALAXY: STRUCTURE, Astrophysics - Astrophysics of Galaxies, GALAXIES: ISM, Astrophysics - Cosmology and Nongalactic Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
