
arXiv: 1209.4359
The Fermi Gamma-ray Space Telescope is producing the most detailed inventory of the gamma-ray sky to date. Despite tremendous achievements approximately 25% of all Fermi extragalactic sources in the Second Fermi LAT Catalogue (2FGL) are listed as active galactic nuclei (AGN) of uncertain type. Typically, these are suspected blazar candidates without a conclusive optical spectrum or lacking spectroscopic observations. Here, we explore the use of machine-learning algorithms - Random Forests and Support Vector Machines - to predict specific AGN subclass based on observed gamma-ray spectral properties. After training and testing on identified/associated AGN from the 2FGL we find that 235 out of 269 AGN of uncertain type have properties compatible with gamma-ray BL Lacs and flat-spectrum radio quasars with accuracy rates of 85%. Additionally, direct comparison of our results with class predictions made after following the infrared colour-colour space of Massaro et al. (2012) show that the agreement rate is over four-fifths for 54 overlapping sources, providing independent cross validation. These results can help tailor follow-up spectroscopic programs and inform future pointed surveys with ground-based Cherenkov telescopes.
7 pages, 3 figures, 3 tables, accepted for publication in MNRAS. Complete tables can be retrieved at http://cta.gae.ucm.es/gae/?q=node/132
High Energy Astrophysical Phenomena (astro-ph.HE), FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena
High Energy Astrophysical Phenomena (astro-ph.HE), FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 43 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
