Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Monthly Notices of t...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Monthly Notices of the Royal Astronomical Society
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Partial tidal disruption events by intermediate-mass black holes in supermassive and intermediate-mass black hole binaries

Authors: Xiao-Jun Wu; Ye-Fei Yuan; Yan Luo; Wenbin Lin;

Partial tidal disruption events by intermediate-mass black holes in supermassive and intermediate-mass black hole binaries

Abstract

ABSTRACT In the centres of galaxies, stars that orbit supermassive black hole binaries (SMBHBs) can undergo tidal disruptions due to the Lidov–Kozai mechanism. Nevertheless, most previous researches have predominantly focused on full tidal disruption events (FTDEs). In this study, we employ N-body simulations to investigate partial tidal disruption events (PTDEs) induced by intermediate-mass black holes (IMBHs) in SMBH–IMBH binaries, taking into account consideration the IMBH’s mass, semimajor axis, and eccentricity of the outer orbit. Our findings indicate that, in comparison to FTDEs, the majority of tidal disruption events are actually PTDEs. Furthermore, we find that a significant number of stars experiencing partial disruption ultimately get captured by the IMBH, potentially leading to repeating flares. By comparing the period of the periodic eruptions observed in ASASSN-14ko, we find that PTDEs in a specific SMBH–IMBH binary system can align with the observed period if the SMBH has a mass of $10^7\rm {\ M_\odot }$, the IMBH has a mass smaller than approximately $10^5\rm {\ M_\odot }$, the eccentricity of the SMBH–IMBH binary exceeds approximately 0.5, and the semimajor axis of the SMBH–IMBH binary is larger than approximately 0.001 pc. Moreover, our model effectively accounts for the observed period derivative for ASASSN-14ko ($\dot{P}=-0.0026\pm 0.0006$), and our results also imply that some quasi-periodic eruptions may be attributed to PTDEs occurring around SMBH–IMBH binaries.

Related Organizations
Keywords

Astrophysics - High Energy Astrophysical Phenomena

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
gold