
arXiv: 2403.11692
ABSTRACT We present the new ARTEMIS emulator suite of high-resolution (baryon mass of 2.23 × 104h−1 M⊙) zoom-in simulations of Milky Way-mass systems. Here, three haloes from the original ARTEMIS sample have been rerun multiple times, systematically varying parameters for the stellar feedback model, the density threshold for star formation, the reionization redshift, and the assumed warm dark matter (WDM) particle mass (assuming a thermal relic). From these simulations, emulators are trained for a wide range of statistics that allow for fast predictions at combinations of parameters not originally sampled, running in ∼1 ms (a factor of ∼1011 faster than the simulations). In this paper, we explore the dependence of the central haloes’ stellar mass on the varied parameters, finding the stellar feedback parameters to be the most important. When constraining the parameters to match the present-day stellar mass halo mass relation inferred from abundance matching we find that there is a strong degeneracy in the stellar feedback parameters, corresponding to a freedom in formation time of the stellar component for a fixed halo assembly history. We additionally explore the dependence of the satellite stellar mass function, where it is found that variations in stellar feedback, the reionization redshift, and the WDM mass all have a significant effect. The presented emulators are a powerful tool which allows for fundamentally new ways of analysing and interpreting cosmological hydrodynamic simulations. Crucially, allowing their free (subgrid) parameters to be varied and marginalized, leading to more robust constraints and predictions.
Cosmology and Nongalactic Astrophysics (astro-ph.CO), Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies, Astrophysics - Cosmology and Nongalactic Astrophysics
Cosmology and Nongalactic Astrophysics (astro-ph.CO), Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies, Astrophysics - Cosmology and Nongalactic Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
