Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Monthly Notices of t...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Monthly Notices of the Royal Astronomical Society
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Massive black hole binaries as sources of low-frequency gravitational waves and X-shaped radio galaxies

Authors: Małgorzata Curyło; Tomasz Bulik;

Massive black hole binaries as sources of low-frequency gravitational waves and X-shaped radio galaxies

Abstract

ABSTRACT We present the study of multimessenger signatures of massive black hole (MBH) binaries residing in the centres of galaxy merger remnants. In particular, we first focus on the gravitational wave background (GWB) produced by an ensemble of MBH binary inspirals in the frequency range probed by the Pulsar Timing Array (PTA) experiments. The improved estimates of the characteristic strain were obtained with the inclusion of environmental effects on the MBH binary orbital decay within the galaxy merger remnants, added in post-processing to the semi-analytical model of galaxy formation and evolution SHARK. Secondly, we explore two, intriguing in terms of the MBH binary evolution studies, hypotheses aiming to explain the origins of X-shaped radio galaxies – a peculiar type of objects with double lobe structures, constituting approximately 6–10 per cent of known radio loud galaxies. The two considered scenarios involve either an abrupt change in the jet direction after an MBH merger (a spin-flip) or an unresolved close binary, where each of the two components produces a jet. We find that the estimated GWB amplitude at the reference frequency $f_0=1 \, {\rm yr}^{-1}$ is in the range of $A_{\rm { yr^{-1}}} = 1.20\times 10^{-15}{\!-\!}1.46\times 10^{-15}$, which is 50 per cent lower than the strain of the signal detected by the PTA experiments. We also show that the spin-flip scenario considered in gas-poor mergers reproduces the observed properties of X-shaped radio galaxies well in terms of flip angle, redshift, and luminosity distributions.

Keywords

High Energy Astrophysical Phenomena (astro-ph.HE), Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena, Astrophysics - Astrophysics of Galaxies

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
gold