
arXiv: 2302.05230
ABSTRACT Gravitational microlensing is a powerful method for detecting and characterizing free-floating planetary-mass objects (FFPs). FFPs could have exomoons rotating them. In this work, we study the probability of realizing these systems (i.e. free-floating moon-planet ones) through microlensing observations. These systems make mostly close caustic configurations with a considerable finite-source effect. We investigate finite-source microlensing light curves owing to free-floating moon-planet systems. We conclude that crossing planetary caustics causes an extensive extra peak at light curves’ wing that only changes its width if the source star does not cross the central caustic. If the source trajectory is normal to the moon-planet axis, the moon-induced perturbation has a symmetric shape with respect to the magnification peak, and its light curve is similar to a single-lens one with a higher finite-source effect. We evaluate the Roman efficiency for realizing moon-induced perturbations, which is $\left[0.002-0.094\right]\ \mathrm{ per\, cent}$ by assuming a log-uniform distribution for moon-planet mass ratio in the range ∈ [ −9, −2]. The highest detection efficiency (i.e. $\simeq 0.094~{{\ \rm per\ cent}}$) happens for Saturn-mass planets when moon-planet distance is ∼43Rp, where Rp is the Saturn radius. Enhancing planetary mass extends the event’s time-scale and decreases the finite-source effect, but it reduces the projected moon-planet distance normalized to the Einstein radius s(RE) which in turn decreases the size of planetary caustics and takes them away from the host planet’s position in close caustic configurations.
Earth and Planetary Astrophysics (astro-ph.EP), Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies, Astrophysics - Earth and Planetary Astrophysics
Earth and Planetary Astrophysics (astro-ph.EP), Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies, Astrophysics - Earth and Planetary Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
