Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Monthly Notices of t...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Monthly Notices of the Royal Astronomical Society
Article . 2023 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

Assessing stellar yields in Galaxy chemical evolution: Observational stellar abundance patterns

Authors: Jinning Liang; Eda Gjergo; XiLong Fan;

Assessing stellar yields in Galaxy chemical evolution: Observational stellar abundance patterns

Abstract

ABSTRACTOne-zone Galactic chemical evolution (GCE) models have provided useful insights on a great wealth of average abundance patterns in many environments, especially for the Milky Way and its satellites. However, the scatter of such abundance patterns is still a challenging aspect to reproduce. The leading hypothesis is that dynamics is a likely major source of the dispersion. In this work, we test another hypothesis, namely, that different assumptions on yield modelling may be at play simultaneously. We compare whether the abundance patterns spanned by the models are consistent with those observed in Galactic data. First, we test the performance of recent yield tabulations, and show which of these tabulations best fit Galactic stellar abundances. We then group the models and test if yield combinations match the data scatter and standard deviation. On a fixed Milky Way-like parametrization of NuPyCEE, we test a selection of yields for the three dominant yield sets: low-to-intermediate mass stars, massive stars, and Type Ia supernovae. We also include the production of r-process elements by neutron star mergers. We explore the statistical properties spanned by such yields. We identify the differences and commonalities among yield sets. We define criteria that estimate whether an element is in agreement with the data, or if the model overestimates or underestimates it in various redshift bins. While it is true that yields are a major source of uncertainty in GCE models, the scatter of abundances in stellar spectra cannot be explained by a simple averaging of runs across yield prescriptions.

Related Organizations
Keywords

Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold