
arXiv: 2112.11985
ABSTRACT We present a study of the radio continuum properties of two luminous/ultraluminous infrared galaxy samples: the OH megamaser (OHM) sample (74 objects) and the control sample (128 objects) without detected maser emission. We carried out pilot observations for 140 objects with the radio telescope RATAN-600 at 1.2, 2.3, 4.7, 8.2, 11.2, and 22.3 GHz in 2019–2021. The OHM sample has two times more flat-spectrum sources (32 per cent) than the control sample. Steep radio spectra prevail in both samples. The median spectral index at 4.7 GHz α4.7 = −0.59 for the OHM sample, and α4.7 = −0.71 for the non-OHM galaxies. We confirm a tight correlation of the far-infrared (FIR) and radio luminosities for the OHM sample. We found correlations between isotropic OH line luminosity LOH and the spectral index α4.7 (ρ = 0.26, p-val. = 0.04) and between LOH and radio luminosity P1.4 (ρ = 0.35, p-val. = 0.005). Reviewing subsamples of masers powered by active galactic nuclei (AGNs) and star formation revealed insignificant differences for their FIR and radio properties. None the less, AGN-powered galaxies exhibit larger scatter in a range of parameters and their standard deviations. The similarities in the radio and FIR properties in the two samples are presumably caused by the presence of a significant amount of AGN sources in both samples (47 and 30 per cent in the OHM and control samples) and/or possibly by the presence of undetected OH emission sources in the control sample.
Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies
Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
