
arXiv: 2002.09497
ABSTRACT We use cosmological simulations of isolated Milky Way (MW)-mass galaxies, as well as Local Group (LG) analogues, to define the ‘edge’ – a caustic manifested in a drop in density or radial velocity – of Galactic-sized haloes, both in dark matter and in stars. In the dark matter, we typically identify two caustics: the outermost caustic located at ∼1.4r200m, corresponding to the ‘splashback’ radius, and a second caustic located at ∼0.6r200m, which likely corresponds to the edge of the virialized material that has completed at least two pericentric passages. The splashback radius is ill defined in LG-type environments where the haloes of the two galaxies overlap. However, the second caustic is less affected by the presence of a companion, and is a more useful definition for the boundary of the MW halo. Curiously, the stellar distribution also has a clearly defined caustic, which, in most cases, coincides with the second caustic of the dark matter. This can be identified in both radial density and radial velocity profiles, and should be measurable in future observational programmes. Finally, we show that the second caustic can also be identified in the phase–space distribution of dwarf galaxies in the LG. Using the current dwarf galaxy population, we predict the edge of the MW halo to be 292 ± 61 kpc.
Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies, 520
Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies, 520
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 50 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
