Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Monthly Notices of t...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Monthly Notices of the Royal Astronomical Society
Article . 1997 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 1996
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Redshift evolution of clustering

Authors: MATARRESE, SABINO; COLES P.; LUCCHIN, FRANCESCO; MOSCARDINI, LAURO;

Redshift evolution of clustering

Abstract

We discuss how the redshift dependence of the observed two-point correlation function of various classes of objects can be related to theoretical predictions. This relation involves first a calculation of the redshift evolution of the underlying matter correlations. The next step is to relate fluctuations in mass to those of any particular class of cosmic objects; in general terms, this means a model for the bias and how it evolves with cosmic epoch. Only after these two effects have been quantified can one perform an appropriate convolution of the non-linearly evolved two-point correlation function of the objects with their redshift distribution to obtain the `observed' correlation function for a given sample. This convolution in itself tends to mask the effect of evolution by mixing amplitudes at different redshifts. We develop a formalism which incorporates these requirements and, in particular, a set of plausible models for the evolution of the bias factor. We apply this formalism to the spatial, angular and projected correlation functions from different samples of high-redshift objects, assuming a simple phenomenological model for the initial power-spectrum and an Einstein-de Sitter cosmological model. We find that our model is roughly consistent with data on the evolution of QSO and galaxy clustering, but only if the effective degree of biasing is small. We discuss the differences between our analysis and other theoretical studies of clustering evolution and argue that the dominant barrier to making definitive predictions is uncertainty about the appropriate form of the bias and its evolution with cosmic epoch.

16 pages, 7 postscript figures, uses mn.sty, submitted to MNRAS

Related Organizations
Keywords

Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    154
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
154
Top 10%
Top 10%
Top 10%
Green
bronze