Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Nutritionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Nutrition
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inborn Errors of Sulfur-Containing Amino Acid Metabolism

Authors: James D, Finkelstein;

Inborn Errors of Sulfur-Containing Amino Acid Metabolism

Abstract

Two superimposed metabolic sequences, transsulfuration and the methionine/homocysteine cycle, form the pathway for methionine metabolism in mammalian liver. This combined pathway was formulated first to explain observations in subjects with homocystinuria caused by cystathionine synthase deficiency. Since that time additional inborn errors have been discovered, and currently we know of human subjects with isolated defects in all of the reactions of the combined pathway with only one exception: betaine homocysteine methyltransferase. Studies of these inborn errors have contributed significantly to our knowledge of human methionine metabolism and to the clinical consequences of impaired metabolism. Transsulfuration appears to function primarily for the metabolism of excess methionine, and each of the 5 defects in this pathway results in the accumulation of 1 or more of the normal metabolites. Thus, studies of these disorders may provide insight into both the potential pathological sequelae of nutritional methionine excess as well as whether laboratory testing allows the detection of excess.

Keywords

Adenosylhomocysteinase, Cystathionine gamma-Lyase, Glycine N-Methyltransferase, Methionine Adenosyltransferase, Kidney, Amino Acids, Sulfur, Methionine, Betaine-Homocysteine S-Methyltransferase, Liver, Humans, Amino Acid Metabolism, Inborn Errors, Sulfur

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 10%
Top 10%
Top 10%
bronze