Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Leukocyte...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Leukocyte Biology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2024
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2024
License: CC BY
Data sources: Apollo
versions View all 4 versions
addClaim

Regulation of ICAM-1 in human neutrophils

Authors: Vignarajah, Muralie; Wood, Alexander JT; Nelmes, Elizabeth; Subburayalu, Julien; Herre, Jurgen; Nourshargh, Sussan; Summers, Charlotte; +2 Authors

Regulation of ICAM-1 in human neutrophils

Abstract

Abstract Intercellular cell adhesion molecule 1 (ICAM-1) is a cell surface glycoprotein with a vital role in the immune response to pathogens. The expression pattern of ICAM-1 is wide ranging, encompassing endothelial cells, epithelial cells, and neutrophils. Recent work has characterized the role of ICAM-1 in murine neutrophils, but the function of human neutrophil ICAM-1 is incompletely understood. Herein, we investigated the expression and role of ICAMs in human neutrophils in vitro and in vivo. Our findings show clear expression of ICAM-1, -3, and -4 on peripheral blood–derived neutrophils and demonstrate that the pathogen-associated molecular pattern lipoteichoic acid is an inducer of ICAM-1 expression in vitro. In vivo, neutrophils obtained from the pleural cavity of patients with a parapneumonic effusion display enhanced expression of ICAM-1 compared with peripheral blood– and oral cavity–derived neutrophils. Moreover, migration of peripheral blood–derived neutrophils across endothelial cells can upregulate neutrophil ICAM-1 expression. These findings indicate that pathogen-associated molecular patterns and/or cytokines, alongside transmigration, enhance neutrophil ICAM-1 expression at sites of inflammation. Mechanistically, we observed that ICAM-1high neutrophils display elevated S. aureus phagocytic capacity. However, unlike murine neutrophils, ICAM-1 intracellular signaling in human neutrophils was not essential for phagocytosis of Staphylococcus aureus and reactive oxygen species generation. Taken together, these results have important implications for the regulation of neutrophil-mediated pathogen clearance.

Country
United Kingdom
Keywords

Lipopolysaccharides, Staphylococcus aureus, ICAM-1, Neutrophils, neutrophil, phagocytosis, Intercellular Adhesion Molecule-1, Teichoic Acids, Mice, pleural effusion, Phagocytosis, Humans, Animals

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Green
hybrid
Related to Research communities