Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The ISME Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The ISME Journal
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
versions View all 2 versions
addClaim

Pectin-derived oligogalacturonides shape mutualistic interactions between Bacillus and its host plant

Authors: Farah Boubsi; Adrien Anckaert; Anthony Argüelles-Arias; Marc Ongena;

Pectin-derived oligogalacturonides shape mutualistic interactions between Bacillus and its host plant

Abstract

Abstract Certain beneficial bacteria of the root-associated microbiome such as Bacillus velezensis protect plants against diseases and are promising biocontrol agents exploited in sustainable agriculture. Unveiling the molecular dialogue governing mutualistic interactions between these beneficials and their host is essential to better understand their ecological behavior and to optimize their use as bioprotectants. However, the chemical diversity and functionality of mediators involved in this interkingdom crosstalk remain largely unexplored. In this study, we uncover a strategy by which B. velezensis exploits the root cell wall polymer pectin to prime its host for enhanced resistance against phytopathogens and to ensure a safe environment enabling its efficient root establishment. Thanks to the activity of its two conserved pectinolytic enzymes, the bacterium generates a specific pattern of short oligogalacturonides that act as efficient triggers of plant systemic defense against leaf pathogens. Moreover, these oligomers induce only weak immune responses in root cells and dampen local defense reaction in response to the perception of the bacterium itself. Our data emphasize the key role of short oligogalacturonides as mediators in the intricate interplay between plants and their bacterial associates, providing new insights into the mechanisms that enable beneficial bacteria to coexist with their host plant.

Related Organizations
Keywords

Original Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average