<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 17712222
Huntington's disease (HD) is a neurological disorder caused by a genetic mutation in the IT15 gene. Progressive cell death in the striatum and cortex, and accompanying declines in cognitive, motor, and psychiatric functions, are characteristic of the disease. Animal models of HD have provided insight into disease pathology and the outcomes of therapeutic strategies. Earlier studies of HD most often used toxin-induced models to study mitochondrial impairment and excitotoxicity-induced cell death, which are both mechanisms of degeneration seen in the HD brain. These models, based on 3-nitropropionic acid and quinolinic acid, respectively, are still often used in HD studies. The discovery in 1993 of the huntingtin mutation led to the creation of newer models that incorporate a similar genetic defect. These models, which include transgenic and knock-in rodents, are more representative of the HD progression and pathology. An even more recent model that uses a viral vector to encode the gene mutation in specific areas of the brain may be useful in nonhuman primates, as it is difficult to produce genetic models in these species. This article examines the aforementioned models and describes their use in HD research, including aspects of the creation, delivery, pathology, and tested therapies for each model.
Primates, Organisms, Genetically Modified, Genetic Vectors, Lentivirus, Quinolinic Acid, Nitro Compounds, Rats, Disease Models, Animal, Mice, Huntington Disease, Disease Progression, Animals, Propionates
Primates, Organisms, Genetically Modified, Genetic Vectors, Lentivirus, Quinolinic Acid, Nitro Compounds, Rats, Disease Models, Animal, Mice, Huntington Disease, Disease Progression, Animals, Propionates
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 206 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |