Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Human Molecular Genetics
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Genetic variation in insulin-like growth factor 2 may play a role in ovarian cancer risk

Authors: Pearce, Celeste Leigh; Doherty, Jennifer A; Van Den Berg, David J; Moysich, Kirsten; Hsu, Chris; Cushing-Haugen, Kara L; Conti, David V; +29 Authors

Genetic variation in insulin-like growth factor 2 may play a role in ovarian cancer risk

Abstract

The insulin-like growth factor (IGF) signaling axis plays an important role in cancer biology. We hypothesized that genetic variation in this pathway may influence risk of ovarian cancer. A three-center study of non-Hispanic whites including 1880 control women, 1135 women with invasive epithelial ovarian cancer and 321 women with borderline epithelial ovarian tumors was carried out to test the association between tag single-nucleotide polymorphisms (tSNPs) (n=58) in this pathway and risk of ovarian cancer. We found no association between variation in IGF1, IGFBP1 or IGFBP3 and risk of invasive disease, whereas five tSNPs in IGF2 were associated with risk of invasive epithelial ovarian cancer at P<0.05 and followed-up one of the associated SNPs. We conducted genotyping in 3216 additional non-Hispanic white cases and 5382 additional controls and were able to independently replicate our initial findings. In the combined set of studies, rs4320932 was associated with a 13% decreased risk of ovarian cancer per copy of the minor allele carried (95% confidence interval 0.81-0.93, P-trend=7.4 × 10(-5)). No heterogeneity of effect across study centers was observed (p(het)=0.25). IGF2 is emerging as an important gene for ovarian cancer; additional genotyping is warranted to further confirm these associations with IGF2 and to narrow down the region harboring the causal SNP.

Keywords

Adult, Ovarian Neoplasms, Genotype, Carcinoma, Ovarian Epithelial, Middle Aged, Polymorphism, Single Nucleotide, White People, Insulin-Like Growth Factor Binding Protein 1, Insulin-Like Growth Factor Binding Proteins, Genetic Heterogeneity, Insulin-Like Growth Factor Binding Protein 3, Insulin-Like Growth Factor II, Risk Factors, Case-Control Studies, Humans, Female, Genetic Predisposition to Disease, Neoplasms, Glandular and Epithelial, Insulin-Like Growth Factor I, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Average
Top 10%
bronze