Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Molecular Genetics
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lgi1 null mutant mice exhibit myoclonic seizures and CA1 neuronal hyperexcitability

Authors: Y. Eugene Yu; Zhongyou Li; Jeane Silva; Lin Mei; Lei Wen; John K. Cowell; Annie Pao; +2 Authors

Lgi1 null mutant mice exhibit myoclonic seizures and CA1 neuronal hyperexcitability

Abstract

LGI1 in humans is responsible for a predisposition to autosomal dominant partial epilepsy with auditory features (ADPEAF). However, mechanisms of how LGI1 mutations cause epilepsy remain unclear. We have used a mouse chromosome engineering strategy to create a null mutation for the gene ortholog encoding LGI1. The Lgi1 null mutant mice show no gross overall developmental abnormalities from routine histopathological analysis. After 12-18 days of age, the homozygous mutant mice all exhibit myoclonic seizures accompanied by rapid jumping and running and die shortly thereafter. The heterozygous mutant mice do not develop seizures. Electrophysiological analysis demonstrates an enhanced excitatory synaptic transmission by increasing the release of the excitatory neurotransmitter glutamate, suggesting a basis for the seizure phenotype. This mouse model, therefore, provides novel insights into the mechanism behind ADPEAF and offers a new opportunity to study the mechanism behind the role of LGI1 in susceptibility to myoclonic seizures.

Keywords

Genetic Vectors, Intracellular Signaling Peptides and Proteins, Glutamic Acid, Proteins, Epilepsies, Myoclonic, Polymerase Chain Reaction, Synaptic Transmission, Mice, Mutant Strains, Electrophysiology, Mice, Mutagenesis, Animals, Genetic Engineering, CA1 Region, Hippocampal, In Situ Hybridization, Fluorescence, DNA Primers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
109
Top 10%
Top 10%
Top 1%
bronze