<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1093/hmg/ddm284
pmid: 17913700
Alternative splicing emerges as one of the most important mechanisms to generate transcript diversity. It is regulated by the formation of protein complexes on pre-mRNA. We demonstrate that protein phosphatase 1 (PP1) binds to the splicing factor transformer2-beta1 (tra2-beta1) via a phylogenetically conserved RVDF sequence located on the RNA recognition motif (RRM) of tra2-beta1. PP1 binds directly to tra2-beta1 and dephosphorylates it, which regulates the interaction between tra2-beta1 and other proteins. Eight other proteins, including SF2/ASF and SRp30c, contain an evolutionary conserved PP1 docking motif in the beta-4 strand of their RRMs indicating that binding to PP1 is a new function of some RRMs. Reducing PP1 activity promotes usage of numerous alternative exons, demonstrating a role of PP1 activity in splice site selection. PP1 inhibition promotes inclusion of the survival of motoneuron 2 exon 7 in a mouse model expressing the human gene. This suggests that reducing PP1 activity could be a new therapeutic principle to treat spinal muscular atrophy and other diseases caused by missplicing events. Our data indicate that the binding of PP1 to evolutionary conserved motifs in several RRMs is the link between known signal transduction pathways regulating PP1 activity and pre-mRNA processing.
Binding Sites, Base Sequence, Amino Acid Motifs, Molecular Sequence Data, RNA-Binding Proteins, Nerve Tissue Proteins, Exons, Recombinant Proteins, Cell Line, Evolution, Molecular, Alternative Splicing, Protein Phosphatase 1, RNA Precursors, Animals, Humans, Amino Acid Sequence, Cyclic AMP Response Element-Binding Protein, Conserved Sequence, Phylogeny, DNA Primers
Binding Sites, Base Sequence, Amino Acid Motifs, Molecular Sequence Data, RNA-Binding Proteins, Nerve Tissue Proteins, Exons, Recombinant Proteins, Cell Line, Evolution, Molecular, Alternative Splicing, Protein Phosphatase 1, RNA Precursors, Animals, Humans, Amino Acid Sequence, Cyclic AMP Response Element-Binding Protein, Conserved Sequence, Phylogeny, DNA Primers
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 79 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |