Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Molecular Genetics
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The developmental genetics of auditory hair cells

Authors: R David, Hawkins; Michael, Lovett;

The developmental genetics of auditory hair cells

Abstract

Loss of auditory hair cells (AHCs) is a major cause of human deafness. Considerable effort has been devoted to unraveling how these mechanotransducers of sound are specified, with a view to correcting hearing loss by gene or stem cell therapies. Recent work on signaling cascades, particularly lateral inhibition and planar cell polarity, has begun to tie together some of the known pathways. Mutations in mice and humans that cause hearing and/or balance disorders are also shedding light on how AHCs are specified and, maintained and handle ion flux. Studies on some of these genes are beginning to provide insights into the more complex genetics of later onset forms of hearing loss. Progress has also been made in solving some long-term goals of auditory biology. Cadherin23 has been identified as a component of AHC stereocilia tip links, and progress has been made towards identifying the elusive AHC mechanoreceptor channel. Preliminary steps have also been taken towards inner-ear gene therapy, and in the engineering of embryonic stem cells for eventual cell therapies. Mammals cannot regenerate AHCs, but birds and other lower vertebrates can. Genomic tools have now been brought to bear on this problem with the aim of deciphering the molecular basis of this regenerative capability. The combination of new genomic tools and the many mouse and chicken embryological and genetic resources should increasingly provide new insights into how AHCs are programed and maintained.

Related Organizations
Keywords

Hearing Loss, Sensorineural, Hair Cells, Auditory, Animals, Gene Expression Regulation, Developmental, Humans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Average
Top 10%
bronze