
AbstractWhilst thousands of genetic variants have been associated with human traits, identifying the subset of those variants that are causal requires a further ‘fine-mapping’ step. We review the basic fine-mapping approach, which is computationally fast and requires only summary data, but depends on an assumption of a single causal variant per associated region which is recognized as biologically unrealistic. We discuss different ways that the approach has been built upon to accommodate multiple causal variants in a region and to incorporate additional layers of functional annotation data. We further review methods for simultaneous fine-mapping of multiple datasets, either exploiting different linkage disequilibrium (LD) structures across ancestries or borrowing information between distinct but related traits. Finally, we look to the future and the opportunities that will be offered by increasingly accurate maps of causal variants for a multitude of human traits.
Genetic Markers, Models, Genetic, Genome, Human, Quantitative Trait Loci, Chromosome Mapping, Polymorphism, Single Nucleotide, Linkage Disequilibrium, Humans, Disease, Genetic Predisposition to Disease, Genome-Wide Association Study
Genetic Markers, Models, Genetic, Genome, Human, Quantitative Trait Loci, Chromosome Mapping, Polymorphism, Single Nucleotide, Linkage Disequilibrium, Humans, Disease, Genetic Predisposition to Disease, Genome-Wide Association Study
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 39 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
