Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Molecular Genetics
Article . 1998 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dystrophins in vertebrates and invertebrates

Authors: Roland G. Roberts; Martin Bobrow;

Dystrophins in vertebrates and invertebrates

Abstract

Members of the dystrophin family of proteins perform a critical but incompletely characterized role in the maintenance of membrane-associated complexes at points of intercellular contact in many vertebrate cell types. They interact with, amongst others, the transmembrane laminin receptor dystroglycan, cytoskeletal actin and, indirectly, the intracellular membrane-associated signalling enzyme neuronal nitric oxide synthase (nNOS). Here we describe sequences of a range of dystrophin-related proteins from vertebrate and invertebrate animals (including the important model organism Drosophila melanogaster ) and infer an evolutionary history of this family and its relationship to the distantly related dystrobrevins. It appears that most metazoa possess sequences encoding a single highly conserved dystrophin-like protein in addition to a presumed distinct dystrobrevin, derived from an early duplication of an ancestral gene. In the vertebrates (but not the protochordate Amphioxus), the single invertebrate dystrophin-like gene has undergone serial duplication to generate at least three distinct genes encoding proteins which have adopted specialized roles. It is hoped that this broadening of the biology of the dystrophins will afford further opportunities for the advancement of our understanding of the fundamental defect underlying the variety of human genetic disorders which result from aberrant or absent dystrophin-associated complexes.

Keywords

Sequence Homology, Amino Acid, Utrophin, Xenopus, Molecular Sequence Data, Neuropeptides, Membrane Proteins, Muscle Proteins, Torpedo, Dystrophin, Cytoskeletal Proteins, Mice, Dogfish, Dystrophin-Associated Proteins, Animals, Humans, Chickens, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
79
Top 10%
Top 10%
Top 10%
bronze