<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 11588153
Alpha3-fucosyltransferases (alpha3-FucTs) catalyze the final step in the synthesis of a range of important glycoconjugates that function in cell adhesion and lymphocyte recirculation. Six members of this family of enzymes have been cloned from the human genome, and their expression pattern has been shown to be highly regulated. Each enzyme has a unique acceptor substrate binding pattern, and each generates a unique range of fucosylated products. Results from a range of studies have provided information on amino acids in the FucT sequence that contribute to the differential acceptor specificity for the FucTs, and to the binding of the nucleotide sugar donor GDP-fucose. These results, in conjunction with results obtained from the analysis of the disulfide bond pattern, have provided useful clues about the spatial distribution of amino acids that influence or directly contribute to substrate binding. This information is reviewed here, and a molecular fold prediction is presented which has been constructed based on the available information and current modeling methodology.
Models, Molecular, Structure-Activity Relationship, Protein Conformation, Chromosome Mapping, Humans, Fucosyltransferases
Models, Molecular, Structure-Activity Relationship, Protein Conformation, Chromosome Mapping, Humans, Fucosyltransferases
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 175 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |