
ABSTRACT A quantitative model is proposed for the expected degree of relationship between copies of a family of transposable elements in a finite population of hosts. Special cases of the model (in which the process of homogenization of element copies either is or is not limited by transposition rate) are presented and illustrated, using data on mobile sequences from different species. It is shown that transposition will be expected, in large populations, to result in only a rather distant relationship between transposable elements at different genomic sites. Possible inadequacies of the model are suggested and quantified.
Drosophila melanogaster, Genetics, Population, Models, Genetic, Statistics as Topic, DNA Transposable Elements, Animals, DNA, Biological Evolution, Repetitive Sequences, Nucleic Acid
Drosophila melanogaster, Genetics, Population, Models, Genetic, Statistics as Topic, DNA Transposable Elements, Animals, DNA, Biological Evolution, Repetitive Sequences, Nucleic Acid
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
