Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genome Biology and E...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genome Biology and Evolution
Article . 2011 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genome Biology and Evolution
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2011
License: CC BY NC
Data sources: PubMed Central
MPG.PuRe
Article . 2011
Data sources: MPG.PuRe
versions View all 4 versions
addClaim

CpG Deamination Creates Transcription Factor–Binding Sites with High Efficiency

Authors: Zemojtel, T.; Kielbasa, S.; Arndt, P.; Behrens, S.; Bourque, G.; Vingron, M.;

CpG Deamination Creates Transcription Factor–Binding Sites with High Efficiency

Abstract

The formation of new transcription factor-binding sites (TFBSs) has a major impact on the evolution of gene regulatory networks. Clearly, single nucleotide mutations arising within genomic DNA can lead to the creation of TFBSs. Are molecular processes inducing single nucleotide mutations contributing equally to the creation of TFBSs? In the human genome, a spontaneous deamination of methylated cytosine in the context of CpG dinucleotides results in the creation of thymine (C → T), and this mutation has the highest rate among all base substitutions. CpG deamination has been ascribed a role in silencing of transposons and induction of variation in regional methylation. We have previously shown that CpG deamination created thousands of p53-binding sites within genomic sequences of Alu transposons. Interestingly, we have defined a ∼30 bp region in Alu sequence, which, depending on a pattern of CpG deamination, can be converted to functional p53-, PAX-6-, and Myc-binding sites. Here, we have studied single nucleotide mutational events leading to creation of TFBSs in promoters of human genes and in genomic regions bound by such key transcription factors as Oct4, NANOG, and c-Myc. We document that CpG deamination events can create TFBSs with much higher efficiency than other types of mutational events. Our findings add a new role to CpG methylation: We propose that deamination of methylated CpGs constitutes one of the evolutionary forces acting on mutational trajectories of TFBSs formation contributing to variability in gene regulation.

Keywords

Binding Sites, Pan troglodytes, DNA, Evolution, Molecular, Deamination, Mutation, Animals, Humans, CpG Islands, Gene Regulatory Networks, Promoter Regions, Genetic, Research Articles, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%
Green
gold