
pmid: 33601419
ABSTRACT Permafrost describes the condition of earth material (sand, ground, organic matter, etc.) cemented by ice when its temperature remains at or below 0°C continuously for longer than 2 years. Evidently, permafrost is as old as the time passed from freezing of the earth material. Permafrost is a unique phenomenon and may preserve life forms it encloses. Therefore, in order to talk confidently about the preservation of paleo-objects in permafrost, knowledge about the geological age of sediments, i.e. when the sediments were formed, and permafrost age, when those sediments became permanently frozen, is essential. There are two types of permafrost—syngenetic and epigenetic. The age of syngenetic permafrost corresponds to the geological age of its sediments, whereas the age of epigenetic permafrost is less than the geological age of its sediments. Both of these formations preserve microorganisms and their metabolic products; however, the interpretations of the microbiological and molecular-biological data are inconsistent. This paper reviews the current knowledge of time–temperature history and age of permafrost in relation to available microbiological and metagenomic data.
Freezing, Temperature, Permafrost, Metagenomics
Freezing, Temperature, Permafrost, Metagenomics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
