
Abstract Serverless computing is an ever-growing programming paradigm being adopted by developers all over the world. Its highly scalable, automatic load balancing, and pay for what you use design is a powerful tool that can also greatly reduce operational costs. However, these advantages also leave serverless computing open to a unique threat, Denial-of-Wallet (DoW). It is the intentional targeting of serverless function endpoints with request traffic in order to artificially raise the usage bills for the application owner. A subset of these attacks are leeches. They perform DoW at a rate that could go undetected as it is not a sudden violent influx of requests. We devise a means of detecting such attacks by utilizing a novel approach of representing request traffic as heat maps and training an image classification algorithm to distinguish between normal and malicious traffic behaviour. Our classifier utilizes convolutional neural networks and achieves 97.98% accuracy. We then design a system for the implementation of this model that would allow application owners to monitor their traffic in real time for suspicious behaviour.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
