Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cardiovascular Resea...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cardiovascular Research
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The G protein coupled receptor kinase 2 plays an essential role in beta-adrenergic receptor-induced insulin resistance

Authors: E. Cipolletta; A. Campanile; G. Santulli; E. Sanzari; D. Leosco; CAMPIGLIA, Pietro; B. Trimarco; +1 Authors

The G protein coupled receptor kinase 2 plays an essential role in beta-adrenergic receptor-induced insulin resistance

Abstract

Insulin (Ins) resistance (IRES) associates to increased cardiovascular risk as observed in metabolic syndrome. Chronic stimulation of beta-adrenergic receptors (betaAR) due to exaggerated sympathetic nervous system activity is involved in the pathogenesis of IRES. The cellular levels of G protein coupled receptor kinase 2 (GRK2) increase during chronic betaAR stimulation, leading to betaAR desensitization. We tested the hypothesis that GRK2 plays a role in betaAR-induced IRES.We evaluated Ins-induced glucose uptake and signalling responses in vitro in cell overexpressing the beta(2)AR, the GRK2, or the catalytically dead mutant GRK2-DN. In a model of increased adrenergic activity, IRES and elevated cellular GRK2 levels, the spontaneously hypertensive rats (SHR) we performed the intravenous glucose tolerance test load. To inhibit GRK2, we synthesized a peptide based on the catalytical sequence of GRK2 conjugated with the antennapedia internalization sequence (Ant-124). Ins in human kidney embryonic (HEK-293) cells causes rapid accumulation of GRK2, tyrosine phosphorylation of Ins receptor substrate 1 (IRS1) and induces glucose uptake. In the same cell type, transgenic beta(2)AR overexpression causes GRK2 accumulation associated with significant deficit of IRS1 activation and glucose uptake by Ins. Similarly, transgenic GRK2 overexpression prevents Ins-induced tyrosine phosphorylation of IRS1 and glucose uptake, whereas GRK2-DN ameliorates glucose extraction. By immunoprecipitation, GRK2 binds IRS1 but not the Ins receptor in an Ins-dependent fashion, which is lost in HEK-GRK2 cells. Ant-124 improves Ins-induced glucose uptake in HEK-293 and HEK-GRK2 cells, but does not prevent GRK2/IRS1 interaction. In SHR, Ant-124 infusion for 30 days ameliorates IRES and IRS1 tyrosine phosphorylation.Our results suggest that GRK2 mediates adrenergic IRES and that inhibition of GRK2 activity leads to increased Ins sensitivity both in cells and in animal model of IRES.

Country
Italy
Keywords

Male, G-Protein-Coupled Receptor Kinase 2, G Protein Receptors, Rats, Inbred WKY, Cell Line, Rats, Disease Models, Animal, Glucose, insulin resistance, Rats, Inbred SHR, Receptors, Adrenergic, beta, Insulin Receptor Substrate Proteins, Animals, Homeostasis, Humans, Insulin, Animals; Cell Line; Disease Models; Animal; G-Protein-Coupled Receptor Kinase 2; genetics/metabolism; Glucose; metabolism/pharmacology; Homeostasis; physiology; Humans; Insulin Receptor Substrate Proteins; Insulin Resistance; Insulin; Male; Muscle; Skeletal; metabolism; Rats; Inbred SHR; Inbred WKY; Receptors; Adrenergic; beta, G Protein Receptors; insulin resistance, Insulin Resistance, Muscle, Skeletal

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    93
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
93
Top 10%
Top 10%
Top 10%
bronze