
doi: 10.1093/cvr/cvm079
pmid: 18055579
Sarcomeric dysfunction plays a central role in reduced cardiac pump function in heart failure. This review focuses on the alterations in sarcomeric proteins in diseased myocardium that range from altered isoform expression to post-translational protein changes such as proteolysis and phosphorylation. Recent studies in animal models of heart failure and human failing myocardium converge and indicate that sarcomeric dysfunction, including altered maximum force development, Ca(2+) sensitivity, and increased passive stiffness, largely originates from altered protein phosphorylation, caused by neurohumoral-induced alterations in the kinase-phosphatase balance inside the cardiomyocytes. Novel therapies, which specifically target phosphorylation sites within sarcomeric proteins or the kinases and phosphatases involved, might improve cardiac function in heart failure.
Heart Failure, Sarcomeres, Myocardium, Muscle Proteins, Myocardial Contraction, Animals, Humans, Protein Isoforms, Phosphorylation, Protein Kinases, Protein Processing, Post-Translational, Peptide Hydrolases
Heart Failure, Sarcomeres, Myocardium, Muscle Proteins, Myocardial Contraction, Animals, Humans, Protein Isoforms, Phosphorylation, Protein Kinases, Protein Processing, Post-Translational, Peptide Hydrolases
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 163 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
