<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract Striatal loci are connected to both the ipsilateral and contralateral frontal cortex. Normative quantitation of the dissimilarity between striatal loci’s hemispheric connection profiles and its spatial variance across the striatum, and assessment of how interindividual differences relate to function, stands to further the understanding of the role of corticostriatal circuits in lateralized functions and the role of abnormal corticostriatal laterality in neurodevelopmental and other neuropsychiatric disorders. A resting-state functional connectivity fingerprinting approach (n = 261) identified “laterality hotspots”—loci whose profiles of connectivity with ipsilateral and contralateral frontal cortex were disproportionately dissimilar—in the right rostral ventral putamen, left rostral central caudate, and bilateral caudal ventral caudate. Findings were replicated in an independent sample and were robust to both preprocessing choices and the choice of cortical atlas used for parcellation definitions. Across subjects, greater rightward connectional laterality at the right ventral putamen hotspot and greater leftward connectional laterality at the left rostral caudate hotspot were associated with higher performance on tasks engaging lateralized functions (i.e., response inhibition and language, respectively). In sum, we find robust and reproducible evidence for striatal loci with disproportionately lateralized connectivity profiles where interindividual differences in laterality magnitude are associated with behavioral capacities on lateralized functions.
Brain Mapping, Neural Pathways, Putamen, Humans, Magnetic Resonance Imaging, Corpus Striatum, Functional Laterality
Brain Mapping, Neural Pathways, Putamen, Humans, Magnetic Resonance Imaging, Corpus Striatum, Functional Laterality
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |