
pmid: 7580127
The motor cortex displays remarkable plasticity in response to changes in sensory and motor experience; however, the synaptic mechanisms underlying functional plasticity are not known. It is believed that synaptic processes that alter the strength of neuronal connections, such as long-term potentiation (LTP), are mechanisms by which synaptic circuits are modified by experience, resulting in functional adaptations. In the present study, we examined the mechanisms of LTP of synaptic responses in layers II/III to vertical (stimulation in layers V/VI) and horizontal (stimulation in layers II/III) inputs, in slices from rat motor cortex. Tetanic stimulation in layers V/VI or II/III induced LTP in 60% of the field potentials (n = 20) and in 73% of the intracellularly recorded postsynaptic potentials (n = 33). LTP was induced in cells with firing patterns characteristic of regular-spiking, fast-spiking, or bursting cells. LTP was expressed, for the most part, in kainate/AMPA receptor-mediated responses; however, potentiation of NMDA receptor-mediated components was also observed. Induction of LTP was prevented when either NMDA receptors or dihydropyridine-sensitive Ca2+ channels (DSCCs) were blocked, although blockade of DSCCs was less effective in preventing LTP induction. Based on the present data and previous LTP studies, we suggest that in many forms of LTP more than one mechanism participates in the induction process. The present findings may be relevant to the synaptic mechanisms underlying functional plasticity in motor cortex.
Male, Long-Term Potentiation, Motor Cortex, Synaptic Membranes, In Vitro Techniques, Calcium Channel Blockers, Receptors, N-Methyl-D-Aspartate, Electric Stimulation, Rats, Neural Pathways, Animals, Female, Calcium Channels, Rats, Wistar, Extracellular Space, Evoked Potentials
Male, Long-Term Potentiation, Motor Cortex, Synaptic Membranes, In Vitro Techniques, Calcium Channel Blockers, Receptors, N-Methyl-D-Aspartate, Electric Stimulation, Rats, Neural Pathways, Animals, Female, Calcium Channels, Rats, Wistar, Extracellular Space, Evoked Potentials
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 63 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
