Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ British Journal of A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
British Journal of Anaesthesia
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
British Journal of Anaesthesia
Article . 2011 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neurological biomarkers in the perioperative period

Authors: Ehab Farag; Basem Abdelmalak; Juan P. Cata;

Neurological biomarkers in the perioperative period

Abstract

The rapid detection and evaluation of patients presenting with perioperative neurological dysfunction is of great clinical relevance. Biomarkers have been defined as biological molecules that can be used as an indicator of new onset or progression of a biological process or effect of treatment. Biomarkers have become increasingly important in this setting to supplement other modalities of diagnosis such as EEG, sensory- or motor-evoked potential, transcranial Doppler, near-infrared spectroscopy, or imaging methods. A number of neuro-proteins have been identified and are currently under investigation for potential to provide insights into injury severity, outcome, and the ability to monitor cellular damage and molecular events that occur during neurological injury. S100B is a protein released by glial cells and is considered a marker of blood-brain barrier dysfunction. Clinical studies in patients undergoing cardiac and non-cardiac surgery indicate that serum levels of S100B are increased intraoperatively and after operation. The neurone-specific enolase has also been extensively investigated as a potential marker of neuronal injury in the context of cardiac and non-cardiac surgery. A third biomarker of interest is the Tau protein, which has been linked to neurodegenerative disorders. Tau appears to be more specific than the previous two biomarkers since it is only found in the central nervous system. The metalloproteinase and ubiquitin C terminal hydroxylase-L1 (UCH-L1) are the most recently researched markers; however, their usefulness is still unclear. This review presents a comprehensive overview of S100B, neuronal-specific enolase, metalloproteinases, and UCH-L1 in the perioperative period.

Keywords

Endarterectomy, Carotid, Cardiopulmonary Bypass, S100 Proteins, tau Proteins, S100 Calcium Binding Protein beta Subunit, Perioperative Care, Phosphopyruvate Hydratase, Metalloproteases, Humans, Nerve Growth Factors, Cardiac Surgical Procedures, Nervous System Diseases, Ubiquitin Thiolesterase, Biomarkers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    84
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
84
Top 10%
Top 10%
Top 10%
hybrid