Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ British Journal of A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
British Journal of Anaesthesia
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
British Journal of Anaesthesia
Article . 2007 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cerebrovascular reactivity during hypothermia and rewarming

Authors: A, Lavinio; I, Timofeev; J, Nortje; J, Outtrim; P, Smielewski; A, Gupta; P J, Hutchinson; +4 Authors

Cerebrovascular reactivity during hypothermia and rewarming

Abstract

Experimental evidence from a murine model of traumatic brain injury (TBI) suggests that hypothermia followed by fast rewarming may damage cerebral microcirculation. The effects of hypothermia and subsequent rewarming on cerebral vasoreactivity in human TBI are unknown.This is a retrospective analysis of data acquired during a prospective, observational neuromonitoring and imaging data collection project. Brain temperature, intracranial pressure (ICP), and cerebrovascular pressure reactivity index (PRx) were continuously monitored.Twenty-four TBI patients with refractory intracranial hypertension were cooled from 36.0 (0.9) to 34.2 (0.5) degrees C [mean (sd), P < 0.0001] in 3.9 (3.7) h. Induction of hypothermia [average duration 40 (45) h] significantly reduced ICP from 23.1 (3.6) to 18.3 (4.8) mm Hg (P < 0.05). Hypothermia did not impair cerebral vasoreactivity as average PRx changed non-significantly from 0.00 (0.21) to -0.01 (0.21). Slow rewarming up to 37.0 degrees C [rate of rewarming, 0.2 (0.2) degrees C h(-1)] did not increase ICP [18.6 (6.2) mm Hg] or PRx [0.06 (0.18)]. However, in 17 (70.1%) out of 24 patients, rewarming exceeded the brain temperature threshold of 37 degrees C. In these patients, the average brain temperature was allowed to increase to 37.8 (0.3) degrees C (P < 0.0001), ICP remained stable at 18.3 (8.0) mm Hg (P = 0.74), but average PRx increased to 0.32 (0.24) (P < 0.0001), indicating significant derangement in cerebrovascular reactivity. After rewarming, PRx correlated independently with brain temperature (R = 0.53; P < 0.05) and brain tissue O2 (R = 0.66; P < 0.01).After moderate hypothermia, rewarming exceeding the 37 degrees C threshold is associated with a significant increase in average PRx, indicating temperature-dependent hyperaemic derangement of cerebrovascular reactivity.

Keywords

Adult, Male, Adolescent, Intracranial Pressure, Middle Aged, Body Temperature, Hypothermia, Induced, Brain Injuries, Cerebrovascular Circulation, Acute Disease, Humans, Female, Intracranial Hypertension, Rewarming, Child, Retrospective Studies

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    115
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
115
Top 10%
Top 10%
Top 10%
hybrid