
Abstract Motivation: The reverse-phase protein lysate arrays have been used to quantify the relative expression levels of a protein in a number of cellular samples simultaneously. To avoid quantification bias due to mis-specification of commonly used parametric models, a nonparametric approach based on monotone response curves may be used. The existing methods, however, aggregate the protein concentration levels of replicates of each sample, and therefore fail to account for within-sample variability. Results: We propose a method of regularization on protein concentration estimation at the level of individual dilution series to account for within-sample or within-group variability. We use an efficient algorithm to optimize an approximate objective function, with a data-adaptive approach to choose the level of shrinkage. Simulation results show that the proposed method quantifies protein concentration levels well. We show through the analysis of protein lysate array data from cell lines of different cancer groups that accounting for within-sample variability leads to better statistical analysis. Availability: Code written in statistical programming language R is available at: http://odin.mdacc.tmc.edu/~jhhu/Reno Contact: jhu@mdanderson.org Supplementary information: Supplementary data are available at Bioinformatics online.
Cell Line, Tumor, Neoplasms, Protein Array Analysis, Humans, Proteins, Regression Analysis, Algorithms
Cell Line, Tumor, Neoplasms, Protein Array Analysis, Humans, Proteins, Regression Analysis, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
