
Abstract Summary: RNA-Seq is an exciting methodology that leverages the power of high-throughput sequencing to measure RNA transcript counts at an unprecedented accuracy. However, the data generated from this process are extremely large and biologist-friendly tools with which to analyze it are sorely lacking. MultiExperiment Viewer (MeV) is a Java-based desktop application that allows advanced analysis of gene expression data through an intuitive graphical user interface. Here, we report a significant enhancement to MeV that allows analysis of RNA-Seq data with these familiar, powerful tools. We also report the addition to MeV of several RNA-Seq-specific functions, addressing the differences in analysis requirements between this data type and traditional gene expression data. These tools include automatic conversion functions from raw count data to processed RPKM or FPKM values and differential expression detection and functional annotation enrichment detection based on published methods. Availability: MeV version 4.7 is written in Java and is freely available for download under the terms of the open-source Artistic License version 2.0. The website (http://mev.tm4.org/) hosts a full user manual as well as a short quick-start guide suitable for new users. Contact: johnq@jimmy.harvard.edu
Applications Note, Sequence Analysis, RNA, Gene Expression Profiling, Computer Graphics, High-Throughput Nucleotide Sequencing, Software
Applications Note, Sequence Analysis, RNA, Gene Expression Profiling, Computer Graphics, High-Throughput Nucleotide Sequencing, Software
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 471 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
