Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioinformaticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article . 2009 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article . 2010
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

Annotation confidence score for genome annotation: a genome comparison approach

Authors: Youngik Yang; Donald Gilbert; Sun Kim;

Annotation confidence score for genome annotation: a genome comparison approach

Abstract

Abstract Motivation: The massively parallel sequencing technology can be used by small research labs to generate genome sequences of their research interest. However, annotation of genomes still relies on the manual process, which becomes a serious bottleneck to the high-throughput genome projects. Recently, automatic annotation methods are increasingly more accurate, but there are several issues. One important challenge in using automatic annotation methods is to distinguish annotation quality of ORFs or genes. The availability of such annotation quality of genes can reduce the human labor cost dramatically since manual inspection can focus only on genes with low-annotation quality scores. Results: In this article, we propose a novel annotation quality or confidence scoring scheme, called Annotation Confidence Score (ACS), using a genome comparison approach. The scoring scheme is computed by combining sequence and textual annotation similarity using a modified version of a logistic curve. The most important feature of the proposed scoring scheme is to generate a score that reflects the excellence in annotation quality of genes by automatically adjusting the number of genomes used to compute the score and their phylogenetic distance. Extensive experiments with bacterial genomes showed that the proposed scoring scheme generated scores for annotation quality according to the quality of annotation regardless of the number of reference genomes and their phylogenetic distance. Availability: http://microbial.informatics.indiana.edu/acs. Contact: sumkim2@indiana.edu Supplementary information: Supplementary data are available at Bioinformatics online.

Related Organizations
Keywords

Genome, Base Sequence, Data Interpretation, Statistical, Molecular Sequence Data, Confidence Intervals, Chromosome Mapping, Sequence Analysis, DNA, Sequence Alignment, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
gold