
pmid: 19855104
Abstract Motivation: The massively parallel sequencing technology can be used by small research labs to generate genome sequences of their research interest. However, annotation of genomes still relies on the manual process, which becomes a serious bottleneck to the high-throughput genome projects. Recently, automatic annotation methods are increasingly more accurate, but there are several issues. One important challenge in using automatic annotation methods is to distinguish annotation quality of ORFs or genes. The availability of such annotation quality of genes can reduce the human labor cost dramatically since manual inspection can focus only on genes with low-annotation quality scores. Results: In this article, we propose a novel annotation quality or confidence scoring scheme, called Annotation Confidence Score (ACS), using a genome comparison approach. The scoring scheme is computed by combining sequence and textual annotation similarity using a modified version of a logistic curve. The most important feature of the proposed scoring scheme is to generate a score that reflects the excellence in annotation quality of genes by automatically adjusting the number of genomes used to compute the score and their phylogenetic distance. Extensive experiments with bacterial genomes showed that the proposed scoring scheme generated scores for annotation quality according to the quality of annotation regardless of the number of reference genomes and their phylogenetic distance. Availability: http://microbial.informatics.indiana.edu/acs. Contact: sumkim2@indiana.edu Supplementary information: Supplementary data are available at Bioinformatics online.
Genome, Base Sequence, Data Interpretation, Statistical, Molecular Sequence Data, Confidence Intervals, Chromosome Mapping, Sequence Analysis, DNA, Sequence Alignment, Algorithms
Genome, Base Sequence, Data Interpretation, Statistical, Molecular Sequence Data, Confidence Intervals, Chromosome Mapping, Sequence Analysis, DNA, Sequence Alignment, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
