Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioinformaticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article . 2007 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article . 2007
DBLP
Article
Data sources: DBLP
MPG.PuRe
Article . 2007
Data sources: MPG.PuRe
versions View all 4 versions
addClaim

Conformational analysis of alternative protein structures

Authors: Francisco S. Domingues; Jörg Rahnenführer; Thomas Lengauer;

Conformational analysis of alternative protein structures

Abstract

AbstractMotivation: Alternative structural models determined experimentally are available for an increasing number of proteins. Structural and functional studies of these proteins need to take these models into consideration as they can present considerable structural differences. The characterization of the structural differences and similarities between these models is a fundamental task in structural biology requiring appropriate methods.Results: We propose a method for characterizing sets of alternative structural models. Three types of analysis are performed: grouping according to structural similarity, visualization and detection of structural variation and comparison of subsets for identifying and locating distinct conformational states. The alpha carbon atoms are used in order to analyse the backbone conformations. Alternatively, side-chain atoms are used for detailed conformational analysis of specific sites. The method takes into account estimates of atom coordinate uncertainty. The invariant regions are used to generate optimal superpositions of these models. We present the results obtained for three proteins showing different degrees of conformational variability: relative motion of two structurally conserved subdomains, a disordered subdomain and flexibility in the functional site associated with ligand binding. The method has been applied in the analysis of the alternative models available in SCOP. Considerable structural variability can be observed for most proteins.Availability: The results of the analysis of the SCOP alternative models, the estimates of coordinate uncertainty as well as the source code of the implementation are available in the STRuster web site: http://struster.bioinf.mpi-inf.mpg.de.Contact: doming@mpi-sb.mpg.deSupplementary information: Supplementary data are available at Bioinformatics online.

Keywords

Models, Molecular, Models, Chemical, Protein Conformation, Sequence Analysis, Protein, Molecular Sequence Data, Computer Simulation, Amino Acid Sequence, Algorithms, Pattern Recognition, Automated

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
gold