Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioinformaticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article . 2007 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article . 2007
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

Haplotype inference for present–absent genotype data using previously identified haplotypes and haplotype patterns

Authors: Yun Joo Yoo; Jianming Tang 0002; Richard A. Kaslow; Kui Zhang;

Haplotype inference for present–absent genotype data using previously identified haplotypes and haplotype patterns

Abstract

AbstractMotivation: Killer immunoglobulin-like receptor (KIR) genes vary considerably in their presence or absence on a specific regional haplotype. Because presence or absence of these genes is largely detected using locus-specific genotyping technology, the distinction between homozygosity and hemizygosity is often ambiguous. The performance of methods for haplotype inference (e.g. PL-EM, PHASE) for KIR genes may be compromised due to the large portion of ambiguous data. At the same time, many haplotypes or partial haplotype patterns have been previously identified and can be incorporated to facilitate haplotype inference for unphased genotype data. To accommodate the increased ambiguity of present–absent genotyping of KIR genes, we developed a hybrid approach combining a greedy algorithm with the Expectation-Maximization (EM) method for haplotype inference based on previously identified haplotypes and haplotype patterns.Results: We implemented this algorithm in a software package named HAPLO-IHP (Haplotype inference using identified haplotype patterns) and compared its performance with that of HAPLORE and PHASE on simulated KIR genotypes. We compared five measures in order to evaluate the reliability of haplotype assignments and the accuracy in estimating haplotype frequency. Our method outperformed the two existing techniques by all five measures when either 60 % or 25 % of previously identified haplotypes were incorporated into the analyses.Availability: The HAPLO-IHP is available at http://www.soph.uab.edu/Statgenetics/People/KZhang/HAPLO-IHP/index.htmlContact: KZhang@ms.soph.uab.eduSupplementary information: Supplementary data are available at Bioinformatics online.

Related Organizations
Keywords

Base Sequence, Genotype, DNA Mutational Analysis, Molecular Sequence Data, Chromosome Mapping, Sequence Analysis, DNA, Pattern Recognition, Automated, Haplotypes, Receptors, KIR, Receptors, Immunologic

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Top 10%
Top 10%
gold