Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioinformaticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article . 2006 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article . 2006
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SANTA domain: a novel conserved protein module in Eukaryota with potential involvement in chromatin regulation

Authors: Dapeng Zhang; Christopher J. Martyniuk; Vance L. Trudeau;

SANTA domain: a novel conserved protein module in Eukaryota with potential involvement in chromatin regulation

Abstract

Abstract Since packaging of DNA in the chromatin structure restricts the accessibility for regulatory factors, chromatin remodeling is required to facilitate nuclear processes such as gene transcription, replication, and genome recombination. Many conserved non-enzymatic protein domains have been identified that contribute to the activities of multiprotein remodeling complexes. Here we identified a novel conserved protein domain in Eukaryota whose putative function may be in regulating chromatin remodeling. Since this domain is associated with a known SANT domain in several vertebrate proteins, we named it the SANTA (SANT Associated) domain. Sequence analysis showed that the SANTA domain is approximately a 90 amino acid module and likely composed of four central β-sheets and three flanking α-helices. Many hydrophobic residues exhibited high conservation along the domain, implying a possible function in protein–protein interactions. The SANTA domain was identified in mammals, chicken, frog, fish, sea squirt, sea urchin, worms and plants. Furthermore, a phylogenetic tree of SANTA domains showed that one plant-specific duplication event happened in the Viridiplantae lineage. Contact: trudeauv@uottawa.ca Supplementary Information: Supplementary Figure S1 for this paper is available at Bioinformatics online.

Keywords

Sequence Homology, Amino Acid, Molecular Sequence Data, Chromatin Assembly and Disassembly, Chromatin, Protein Structure, Tertiary, DNA-Binding Proteins, Eukaryotic Cells, Species Specificity, Sequence Analysis, Protein, Animals, Humans, Amino Acid Sequence, Sequence Alignment, Conserved Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Average
gold