Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioinformaticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article . 2004 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioinformatics
Article . 2005
Bioinformatics
Article . 2004
Data sources: Pure Amsterdam UMC
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of longitudinal metabolomics data

Authors: Jansen, J.J.; Hoefsloot, H.C.J.; Boelens, H.F.M.; van der Greef, J.; Smilde, A.K.;

Analysis of longitudinal metabolomics data

Abstract

Abstract Motivation: Metabolomics datasets are generally large and complex. Using principal component analysis (PCA), a simplified view of the variation in the data is obtained. The PCA model can be interpreted and the processes underlying the variation in the data can be analysed. In metabolomics, often a priori information is present about the data. Various forms of this information can be used in an unsupervised data analysis with weighted PCA (WPCA). A WPCA model will give a view on the data that is different from the view obtained using PCA, and it will add to the interpretation of the information in a metabolomics dataset. Results: A method is presented to translate spectra of repeated measurements into weights describing the experimental error. These weights are used in the data analysis with WPCA. The WPCA model will give a view on the data where the non-uniform experimental error is accounted for. Therefore, the WPCA model will focus more on the natural variation in the data. Availability: M-files for MATLAB for the algorithm used in this research are available at http://www-its.chem.uva.nl/research/pac/Software/pcaw.zip

Keywords

Male, Scoring system, Magnetic Resonance Spectroscopy, Time Factors, Mathematical computing, Principal component analysis, Computer program, Urinalysis, Models, Biological, 510, Nuclear magnetic resonance, Metabolic regulation, Protein Interaction Mapping, Analytic method, Animals, Computer Simulation, Analytical research, Priority journal, Principal Component Analysis, Gene Expression Profiling, Proteins, Nonhuman, Macaca mulatta, Algorithm, Analytical error, Rhesus monkey, Female, Controlled study, Algorithms, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 10%
Top 1%
Top 10%
gold