Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioinformaticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article . 2020 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article . 2021
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Batch equalization with a generative adversarial network

Authors: Wesley Wei, Qian; Cassandra, Xia; Subhashini, Venugopalan; Arunachalam, Narayanaswamy; Michelle, Dimon; George W, Ashdown; Jake, Baum; +2 Authors

Batch equalization with a generative adversarial network

Abstract

Abstract Motivation Advances in automation and imaging have made it possible to capture a large image dataset that spans multiple experimental batches of data. However, accurate biological comparison across the batches is challenged by batch-to-batch variation (i.e. batch effect) due to uncontrollable experimental noise (e.g. varying stain intensity or cell density). Previous approaches to minimize the batch effect have commonly focused on normalizing the low-dimensional image measurements such as an embedding generated by a neural network. However, normalization of the embedding could suffer from over-correction and alter true biological features (e.g. cell size) due to our limited ability to interpret the effect of the normalization on the embedding space. Although techniques like flat-field correction can be applied to normalize the image values directly, they are limited transformations that handle only simple artifacts due to batch effect. Results We present a neural network-based batch equalization method that can transfer images from one batch to another while preserving the biological phenotype. The equalization method is trained as a generative adversarial network (GAN), using the StarGAN architecture that has shown considerable ability in style transfer. After incorporating new objectives that disentangle batch effect from biological features, we show that the equalized images have less batch information and preserve the biological information. We also demonstrate that the same model training parameters can generalize to two dramatically different types of cells, indicating this approach could be broadly applicable. Availability and implementation https://github.com/tensorflow/gan/tree/master/tensorflow_gan/examples/stargan Supplementary information Supplementary data are available at Bioinformatics online.

Keywords

Image Processing, Computer-Assisted, Neural Networks, Computer, Artifacts

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
gold