
For the risk, progression, and response to treatment of many complex diseases, it has been increasingly recognized that genetic interactions (including gene-gene and gene-environment interactions) play important roles beyond the main genetic and environmental effects. In practical genetic interaction analyses, model mis-specification and outliers/contaminations in response variables and covariates are not uncommon, and demand robust analysis methods. Compared with their nonrobust counterparts, robust genetic interaction analysis methods are significantly less popular but are gaining attention fast. In this article, we provide a comprehensive review of robust genetic interaction analysis methods, on their methodologies and applications, for both marginal and joint analysis, and for addressing model mis-specification as well as outliers/contaminations in response variables and covariates.
Models, Genetic, Humans, Epistasis, Genetic, Gene-Environment Interaction
Models, Genetic, Humans, Epistasis, Genetic, Gene-Environment Interaction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
