
doi: 10.1093/bib/bbad147
pmid: 37088981
Abstract Background Ubiquitous presence of short extrachromosomal circular DNAs (eccDNAs) in eukaryotic cells has perplexed generations of biologists. Their widespread origins in the genome lacking apparent specificity led some studies to conclude their formation as random or near-random. Despite this, the search for specific formation of short eccDNA continues with a recent surge of interest in biomarker development. Results To shed new light on the conflicting views on short eccDNAs’ randomness, here we present DeepCircle, a bioinformatics framework incorporating convolution- and attention-based neural networks to assess their predictability. Short human eccDNAs from different datasets indeed have low similarity in genomic locations, but DeepCircle successfully learned shared DNA sequence features to make accurate cross-datasets predictions (accuracy: convolution-based models: 79.65 ± 4.7%, attention-based models: 83.31 ± 4.18%). Conclusions The excellent performance of our models shows that the intrinsic predictability of eccDNAs is encoded in the sequences across tissue origins. Our work demonstrates how the perceived lack of specificity in genomics data can be re-assessed by deep learning models to uncover unexpected similarity.
Genome, Eukaryotic Cells, Humans, DNA, DNA, Circular, Biomarkers
Genome, Eukaryotic Cells, Humans, DNA, DNA, Circular, Biomarkers
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
