
doi: 10.1093/bib/bbab404
pmid: 34585234
Abstract Circular RNAs (circRNAs) are non-coding RNAs with a special circular structure produced formed by the reverse splicing mechanism, which play an important role in a variety of biological activities. Viruses can encode circRNA, and viral circRNAs have been found in multiple single-stranded and double-stranded viruses. However, the characteristics and functions of viral circRNAs remain unknown. Sequence alignment showed that viral circRNAs are less conserved than circRNAs in animal, indicating that the viral circRNAs may evolve rapidly. Through the analysis of the sequence characteristics of viral circRNAs and circRNAs in animal, it was found that viral circRNAs and animals circRNAs are similar in nucleic acid composition, but have obvious differences in secondary structure and autocorrelation characteristics. Based on these characteristics of viral circRNAs, machine learning algorithms were employed to construct a prediction model to identify viral circRNA. Additionally, analysis of the interaction between viral circRNA and miRNAs showed that viral circRNA is expected to interact with 518 human miRNAs, and preliminary analysis of the role of viral circRNA. And it has been also found that viral circRNAs may be involved in many KEGG pathways related to nervous system and cancer. We curated an online server, and the data and code are available: http://server.malab.cn/viral-CircRNA/.
Machine Learning, MicroRNAs, Viruses, Animals, RNA, Circular, Algorithms
Machine Learning, MicroRNAs, Viruses, Animals, RNA, Circular, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
