
doi: 10.1093/bfgp/elv016
pmid: 25903743
With the advent of next-generation sequencing technologies, we have witnessed a rapid pace of discovery of new patterns of somatic structural variation in cancer genomes, and an attempt to figure out their underlying mechanisms. Some of these mechanisms are associated with particular cancer types, and in some cases are the main cause of the structural mutations that drive the oncogenic process. This review provides an overview of the patterns of somatic structural variation and chromosomal structures that characterize cancer genomes, their causal mechanisms and their impact in oncogenesis.
Genome, Human, Neoplasms, Genomic Structural Variation, Mutation, High-Throughput Nucleotide Sequencing, Humans, Genomics
Genome, Human, Neoplasms, Genomic Structural Variation, Mutation, High-Throughput Nucleotide Sequencing, Humans, Genomics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
