Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Briefings in Functio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Article . 2003
Data sources: Lirias
Briefings in Functional Genomics and Proteomics
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Peptidomics in Drosophila melanogaster

Authors: Schoofs, Liliane; Baggerman, Geert;

Peptidomics in Drosophila melanogaster

Abstract

In analogy with proteomics technology, where all proteins expressed in a cell or tissue are analysed, the peptidomic approach aims at the simultaneous visualisation and identification of the whole peptidome of a cell or tissue, ie all expressed peptides with their post-translational modifications. With nanoscale liquid chromatography (nanoLC), combined with mass spectrometry and subsequent database searching, the peptidome of the Drosophila larval brain has been identified at the amino acid sequence level. In a single experiment involving only 50 Drosophila larval brains, one can obtain a display of the expressed peptides. In this paper, current peptidomics technology will be explained, using Drosophila as an example. Compared with the 400,000 Drosophila whole bodies that were required as a starting material for traditional biochemical peptide purification rounds, the authors are convinced that peptidomics technology, which in the future will certainly be applied to the analysis of different physiological states, has the inherent potential to bring about a true revolution in the study of the molecular physiology of Drosophila.

Country
Belgium
Related Organizations
Keywords

Proteomics, 0604 Genetics, 3101 Biochemistry and cell biology, 3105 Genetics, Mass Spectrometry, Drosophila melanogaster, Sequence Analysis, Protein, Animals, Peptides, Developmental Biology, Chromatography, Liquid

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Average
Top 10%
Top 10%
Green
bronze